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INTRODUCTION 
 
Decision-making is based upon the analysis and comparison of 
appropriate information according to criteria of effectiveness. 
When decisions upon environmental issues are concerned, the 
environmental impact assessment (EIA) process is carried out 
to provide the relevant information. In particular, an EIA is an 
instrument that is undertaken for proposed activities in order to 
ensure that they are environmentally sound and sustainable [1].  
 
An EIA entails a planning process that is used to predict, analyse 
and interpret the adverse environmental effects of a proposal so 
as to minimise or prevent them and, in parallel, maximise the 
benefits of the proposal. On this basis, an EIA provides 
information for competent decision-makers to decide upon the 
proposed development. Interdisciplinary teams of people with 
an appropriate range of scientific, economic and social 
expertise usually carry out an EIA. Moreover, the participation 
of the public in stages of the EIA process is also encouraged to 
lend transparency to its content. Thus, an EIA is produced in a 
collaborative mode among people who usually have divergent 
backgrounds of professional skills, eg critical thinking, 
collaborative and metacognitive skills, etc. Moreover, the 
spatial dispersion of the people involved (either experts or the 
public) may place further barriers to the on-time delivery of an 
EIA. In such cases, new technologies may facilitate online 
collaboration. In particular, rapidly developing Web technology 
may challenge the engagement of more people in active 
participation and facilitate their collaboration.  
 
Environmental education may contribute to students becoming 
conversant with the above real-life collaborative scenario by 
providing analogous supported educational experiences at the 
academic level. In particular, many Web-based collaborative 
tools have been developed with integrated supporting facilities 
that could contribute to successful peer-to-peer collaboration. 

Two primary procedures may be supported during 
collaboration, ie the learning of the task and learning to 
collaborate [1]. The provision of support for the enhancement 
of the latter is the focus of the present work. 
 
Web-based collaboration evolves by means of computer-
mediated social interactions that are logged in databases as raw 
data. A collaboration supporting system needs to employ 
knowledge extraction processes to map these low-level data to 
other, more abstract, yet more meaningful, information, eg 
prediction of future behaviour [2]. Such modelling could aim at 
realising changes in the individual collaborative strategy as they 
are observed at previous successive sessions of collaboration 
and upon them, predicting an indicator of the quality of the 
peer’s collaborative activity in a forthcoming session of 
collaboration. This approach results in the development of an 
adaptive module that supports each peer at the metacognitive 
level, ie towards the management of his/her collaborative 
performance through self-regulation procedures [3]. Unlike 
other machine learning (ML) and Artificial Intelligence (AI) 
algorithms, a neurofuzzy network manages to deal with the 
uncertainties of complex systems, as well as provides a model 
with a transparent and interpretable structure [2][4].  
 
In this article a novel, adaptive neurofuzzy model, namely the 
Collaboration/Metacognition-Adaptive Fuzzy Model (C/M-
AFM), is presented. In particular, the presented work is an 
exploratory study of the modelling procedure of two versions of 
the C/M-AFM, namely the C/M-AFM_1 and C/M-AFM_2. 
They are differentiated mainly on the basis of the number of 
collaborative sessions that are considered during the modelling 
procedure. A comparison of the models’ structures and 
performances provides interesting information regarding the 
design strategy for the development of the adaptive feedback 
module under consideration, establishing a new trend in 
environmental education that promotes collaborative skills.  
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THE PROPOSED C/M-AFMs 
 
The proposed C/M-AFMs are presented through the description 
of their operational components, ie input-output vectors, 
neurofuzzy structure, training and testing procedures.  
 
The construction of the input-output vectors of the C/M-AFMs 
is achieved by means of a Web-based collaboration tool, 
namely Lin2k [3]. The latter facilitates Web-based 
asynchronous written collaboration between two peers and, at 
the same time, provides support for improving their 
professional skills at the task and collaboration levels.  
 
A meta-model of the structural components of Lin2k, is 
depicted in Figure 1, where the pedagogic domain defines the 
character of all the other components, the educational aim, the 
target group and the learning theories employed. On the other 
hand, at the task domain, the case study methodology is utilised 
that enhances the environmental education by providing 
opportunities for the examination of open-ended, real-life 
problems. Furthermore, it serves as a means for the 
improvement of critical thinking skills and the implementation 
of a holistic approach to the problems under consideration, ie 
from environmental, economic and social perspectives. Writing 
skills are also promoted through the composition of a technical 
report, based on the case study, in successive collaborative 
sessions, namely steps (s).  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The meta-model for the realisation of Lin2k [3]. 
 
At the collaborators’ side, the communication model is realised 
by semi-structured interfaces, ie interfaces that possess 
prepared areas that allow specific collaborative and 
metacognitive interactions to take place. More specifically, the 
collaborative interactions refer to the submission of specific 
types of text, ie proposal, contra-proposal, clarification, 
agreement, comment, low and high level questions [3]. These 
cover either the task or the coordination of the collaboration. 
On the other hand, the metacognitive interactions refer to the 
ticks that each peer performs on a Web-form at the end of each 
step. In particular, by the completion of this form, the peer 
denotes his/her intention to improve specific aspects of his/her 
collaborative performance at the next step of the collaboration. 
All the collaborative and metacognitive interactions are logged 
by the system as raw data. During the collaboration, 
intermediate collaborative and metacognitive variables are 
quantified by the system by means of weighting the raw data to 
provide appropriate feedback.  
 
The Lin2k employs a Fuzzy Inference System (FIS), namely 
Collaboration/Metacognition-FIS (C/M-FIS), which manifests 
the evaluation system of a domain expert, ie the teacher (Figure 
2a) [5]. The C/M-FIS combines the acquired values of the 

intermediate variables to infer two values at the end of each 
step, ie )(pC sn  and ),(pM s

n  where n = A, B denotes the 
student, p = 1,…,N signifies the pair, and s = 1,…L denotes the 
step of the case study. In particular, the )( pC sn  values for  
n = A, B are complementary percentages up to 100% that 
reflect the quality of each peer’s collaborative activity, as 
compared to the total pair activity. On the other hand, the 

)(pM s
n  value ranges from 0% (no improvement is required) to 

100% (total improvement is required), and reflects the 
evaluation of each peer’s intention of improvement at the next 
step of the collaboration (s + 1). Both )( pC sn and ),(pM s

n  
values are depicted to each peer at the end of each step (Figure 
2a). This feedback targets the convergence of peers’ 
collaborative activity to equilibrium through self-adjustment 
procedures. The experimental verification of the efficacy of the 
C/M-FIS performance can be found elsewhere [3][5]. 
 
The aim of the proposed C/M-AFM is, by means of the 
collaborative performance reflected in the )( pC sn  and )( pM s

n  
values (input data), to estimate the peer’s collaborative activity 
of the next step )(~ 1 pC sn

+  (output data), prior to the concrete 
collaborative experience. The desired C/M-AFM output is 
fixed to the estimated )(~ 1 pC sn

+  value, whereas two different 
input set-ups are adopted, resulting in two realisations of the 
C/M-AFM, ie the C/M-AFM_1 and C/M-AFM_2, as depicted 
in Figures 2b and 2c, respectively. 
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Figure 2: The integrated Lin2k model, with (a) the Lin2k 
supporting system [3]; (b): the C/M-AFM_1; and (c):  
C/M-AFM_2 embedded during the s step of collaboration 
 
In particular, the C/M-AFM_1 is a model that estimates the 

)(~ 1 pC sn
+  value when presented with the )( pC sn  and )( pM s

n  
values, whereas the C/M-AFM_2 considers the collaborative 
and metacognitive activities of both the steps s – 1 and s. Thus, 
the input data for this model are the ),(1 pC sn

−  ),(1 pM s
n

−  
)( pC sn  and )( pM s

n  values, as depicted in Figure 1(c). In order 
to allow C/M-AFM_2 to perform an estimation of the )(~ 1 pC sn

+  
value from the second step (ie s + 1 = 2) as well, the 

0)()( 00 == pMpC nn  values were used as initial conditions.  
 
Both the C/M-AFMs have a fuzzy neural network (FNN) 
structure that permits knowledge extraction from empirical 
data. In particular, their structure is a layered neural network, 
materialised by means of interconnected nodes [4]. Weights 
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that are assigned to the node connections represent the 
parameters of a set of i = 1:k IF/THEN fuzzy rules, namely 
rule-base. The IF/THEN implication operator defines two parts 
in each fuzzy rule; the antecedent and the consequent, where 
adjacent parameters are realised.  
 
Two primary identification procedures take place in the 
realisation of the C/M-AFMs structures. The first refers to the 
identification of the structural parameters, ie the number of rules 
[6]. The second procedure refers to the premise and consequent 
parameters identification through a training procedure. It is 
performed on the basis of about 75% of the available input-
output data that form the training set. The values of the above 
parameters are identified by means of the back-propagation 
algorithm [4]. This minimises, with a predefined accuracy, the 
training Root Mean-Squared Error (RMSE) between the 
estimation )(~ 1 pC sn

+  of )(1 pC s

n

+  for each C/M-AFM realisation 
[4]. The parameters’ identification is achieved in repetitive cycles 
for the RMSE minimisation, namely epochs. Having all the 
parameters calculated, a model of the input-output relation is 
identified. When new data (lying within the parameters’ range of 
values) are presented as an input to the trained model, the latter is 
then able to generalise and output the )(~ 1

, pC s in
+  value. 

 
Furthermore, a testing procedure is employed to verify the 
quality of the above generalisation ability of the model [4]. To 
this end, about 25% of the available data, forming the testing 
set, are properly selected on the basis of emulating the real 
conditions and differing from the training set [4]. The value of 
the testing RMSE is utilised as an indicator of the quality of the 
performance of the model.  
 
IMPLEMENTATION ISSUES 
 
Experimental uses of Lin2k provided the dataset for the 
development of the C/M-AFM models [3]. More specifically, 16 
civil engineering students from the 10th semester at Aristotle 
University of Thessaloniki, Thessaloniki, Greece, were randomly 
selected and paired (ie N = 8). The peers were asked to 
collaborate through the Lin2k and to prepare an EIA concerning 
the construction of a wastewater treatment plant in a suburban 
area, given the visual and text information provided [3]. 
Collaboration was split into six successive steps (ie L = 6), and 
the collaborative and metacognitive parameters, )( pC sn  and 

)(pM s
n , were estimated by the Lin2k system and used as input 

data for the C/M-AFMs. However, the size of the dataset was 
regarded as poor, considering the complexity of the model and 
the number of the parameters involved. In order to increase the 
generalisation ability of the model, the dataset was interpolated 
by up to 64 pairs. From the overall 64 pairs, the data from the 
14 pairs were selected as the testing set, whereas the remaining 
50 pairs were used as the training set. The training and testing 
procedures were performed by means of the Adaptive Fuzzy 
Modeler (AFM) 2.0 software from STMicroelectronics [6].  
 
RESULTS AND DISCUSSION 
 
Different scenarios in the training set-up were examined during 
the training procedure of the C/M-AFMs in order to select the 
optimal one. Variations in these scenarios, covering the initial 
conditions defined through appropriate selections in the AFM 
interfaces, included the number of inputs and outputs, the number 
of the membership functions (MFs) per input variable, the type 

of MFs, the selection of operators, and the criterion for the 
completion of the training procedure, that is either the number 
of epochs or a desired value of the RMSE. In all scenarios 
under consideration, the completion of the training procedure 
criterion was set as RMSE < 0.05 or number of epochs <300 
and negligible variations in the estimated RMSE value. 
 
From the above procedure in the best-trained C/M-AFM_1, 
five Gaussian-type MFs per input were used and the minimum 
inference method was adopted [6]. The training procedure 
resulted in 25 rules and an almost constant value of  
RMSE = 0.03053 for the number of epochs less than 300. 
Similarly, the best C/M-AFM_2 was trained with the two input-
one output dataset, five Gaussian-type MFs per input and the 
minimum inference method. The training procedure resulted in 
625 rules and a value of RMSE = 0.01745 for 290 epochs.  
 
Apart from the results of the training procedure, results from the 
testing procedure, by means of the testing dataset, are presented 
for both the best-trained C/M-AFM_1 and C/M-AFM realisations 
in Figure 3. In particular, Figure 3a depicts the mean values of 
the experimental )(pCsn  from all peers across the steps  
(s = 2,3,…,6), which serve as target values for the C/M-AFMs. 
The grey area shows the estimated standard deviation (std). In 
Figure 3b, the mean values of the estimated )(~ pC sn  from all 
peers across the steps (s = 2,3,…,6) derived with the C/M-AFM_1 
realisation are shown, while the same ones, when the C/M-AFM_2 
was used, are shown in Figure 3c; again, the grey area in Figures 3b 
and 3c denote the estimated std. When comparing Figure 3a with 
Figures 3b and 3c, a similar morphology between the 
experimental and the estimated data can be seen, justifying the 
efficient performance of the C/M-AFMs in both realisations. The 
mean RMSE ± std across the steps (s = 2,3,…,6) was found to be 
equal to 0.0443±0.028 and 0.0436±0.031 for the C/M-AFM_1 
and C/M-AFM_2, respectively.  
 
These results show a similar performance of the two  
C/M-AFMs; however, the C/M-AFM_2 slightly outperformed 
the C/M-AFM_1 in terms of achieving smaller RMSE values. 
Nevertheless, due to the FNN structure of the models, the 
exponential dependence of the number of the rules on the 
number of inputs should be taken into consideration. This is 
clear from the significant differences observed in the number of 
generated rules in the cases of the best-trained C/M-AFM_1 
(25) and C/M-AFM_2 (625), where two and four inputs were 
used, respectively. However, the larger rule-base of the best-
trained C/M-AFM_2 manages to model better than the one of 
the best-trained C/M-AFM_1, with the unknown relation between 
the input-output dataset achieving the lowest RMSE value with a 
fast convergence. Some differences were noted in the way that 
the estimated MFs are distributed in the universes of discourse of 
the input variables. In particular, the MFs of the C/M-AFM_1 
were more overlapped when compared with those of the C/M-
AFM_2. This is due to the greater estimated std values of the 
MFs of the C/M-AFM_1 compared with those of the C/M-
AFM_2, possibly due to the increased resolution achieved with 
the employment of more input variables (hence, more fuzzy-
rules) into the C/M-AFM_2 realisation.  
 
The generalisation ability of the C/M-AFM, as it is expressed 
through the testing results of the C/M-AFM_1 and  
C/M-AFM_2 (see Figure 3), is quite high, since the tendencies 
observed in the real data are clearly captured by the  



  

 56 

C/M-AFMs. The time of the testing procedure for both of the 
C/M-AFM realisations was almost the same: less than one 
second in a PC Pentium IV 2.8 GHz. This time delay could be 
characterised as negligible and allows the integration of the 
adaptive module under consideration to a synchronous and 
asynchronous modes of communication. 
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Figure 3a: Experimental and estimated by (b) the best-trained 
C/M-AFM_1 and (c) the best-trained C/M-AFM_2 of the mean 
s
nC  values per s step, for the testing input vector. In all cases, 

the grey area denotes the estimated standard deviation. 
 
Overall, the C/M-AFM_1 and C/M-AFM_2 materialise the 
best-trained models of the two different design approaches that 
were tested, as far as the number of the steps considered for the 
estimation of the )(

~ 1 pC s

n

+  value. Although the C/M-AFM_2 
model performed better than the C/M-AFM_1, it also had a 
more complex structure. Consequently, according to the 
implementation priorities, the more appropriate realisation 
could be adopted as a trade-off between the desired error 
minimisation and afforded complexity. 
 
CONCLUDING REMARKS AND FUTURE WORK 
 
Two realisations of an adaptive fuzzy modeller have been tested 
and their performance compared in terms of error minimisation, 
speed of convergence and degree of complexity. The results from 
the training and testing procedures show that both realisations can 
serve as efficient tools in providing an accurate prediction of 
collaborative data during a session of collaboration divided into 
successive steps. In this way, the C/M-AFM could be integrated 
within a collaborative computer-mediated environment in order 
to provide more enhanced feedback to peers during the 
development of their collaboration. The C/M-AFM elaborates on 
important key actions that challenge a microgenetic approach to 
the collaboration [7]. This is as follows:  
 
• It regards an individual as a unit of analysis and observes 

changes in his/her collaborative behaviour over a period of 

time, ie the duration of the case study in which the change 
occurs.  

• It takes into account the elevated density of the 
observations within the transition period [7]. That is, 
observations take place over time intervals, ie weeks for 
the steps of the case study, shorter than the period in 
which the change is expected to take place, ie months for 
the completion of the case study. Its neurofuzzy 
methodology targets the identification of the processes that 
give rise to the change. It contributes to the occurrence and 
acceleration of this change through its generalisation 
capability. Presenting to the individual, at successive 
intervals of the micro-level (end of each step of the case 
study), the estimated value of the forthcoming collaborative 
activity, )(~ 1 pC sn

+ , it highly increases the possibilities to 
effect the desired change. Consequently, the C/M-AFM 
contributes to a formative improvement of peer collabora-
tive behaviour, which is at the core of the provided support. 

• It materialises an external counsellor, who gives feedback 
in order to challenge readjustments in peer collaboration 
interactions. The importance of this approach is profound, 
as it grounds a novel, automated, adaptive user support 
during Internet-based collaboration, which formatively 
refines the quality of the collaboration and encourages the 
users to further improve. 

 
Future work includes extensive application of the proposed 
C/M-AFM in more groups towards its further refinement, 
especially in terms of achieving smaller RMSE values without 
significantly increasing model complexity. Further, the 
application of the model to large-scale experiments could 
extend its generalisation efficiency and facilitate its integration 
within the context of intelligent mediator agent design. 
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